The Use of Self-Induced XRF to Quantify the Pu Content in PWR Spent Nuclear Fuel

نویسندگان

  • William S. Charlton
  • Daniel Strohmeyer
  • Alissa Stafford
  • Steve Saavedra
  • Andrew S. Hoover
  • Clifford Rudy
چکیده

The development of techniques for the accurate quantification of the plutonium content in spent nuclear fuel would provide significant advances for shipper/receiver differences and for input accountability at reprocessing facilities. Several techniques have been studied previously for achieving this goal but these have met with limited success. Due to the radioactive nature of spent fuel, decay energy is being deposited in the fuel at a relatively constant rate. That decay energy leads to self-induced x-ray fluorescence of the uranium and plutonium atoms in the fuel. These resulting x-rays are then emitted by the fuel rod and can be measured in an appropriately designed and implemented instrument. The presence of uranium x-rays has been observed on numerous occasions; however, due to its dilute nature in the spent fuel and the presence of a large background, the plutonium x-rays have only been observed in a small number of experiments and generally with fuel containing very large loadings of plutonium. In this work, a feasibility study was conducted using both Monte Carlo simulations and measurements of PWR spent fuel rods at Oak Ridge National Laboratory as part of the Coupled End-to-End (CETE) demonstration. This feasibility study demonstrated the measurability of the plutonium x-rays for PWR spent fuel with burnups ranging from 35 to 70 GWd/MTU and the potential application of this technique as a quantitative assay tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quartz-Crystal Spectrometer for the Analysis of Plutonium K X-Rays

The ability to quickly quantify the Pu content within spent nuclear fuel (SNF) is essential to nuclear forensics. Analysis of the Pu to U ratio can provide information on fuel which could contribute to the attribution of a fuel sample. Plutonium concentration data can be acquired through non-destructive analysis (NDA) by detecting self-induced x-ray fluorescence (XRF) from Pu in the fuel. Howev...

متن کامل

Analysis of Nuclear Proliferation Resistance of DUPIC Fuel Cycle

This study compares the proliferation resistance of DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle with other fuel cycle cases. The other fuel cycles considered in this study are PWR of once-through mode (PWR-OT), PWR of reprocessing mode (PWR-MOX), in which spent PWR fuel is reprocessed and recovered plutonium is used for making MOX (Mixed Oxide), CANDU with once-through mode (CANDU-...

متن کامل

Determination of the Transuranic Elements Inventory in High Burnup Pwr Spent Fuel Samples by Alpha Spectrometry

Determination of transuranic elements such as U, Pu, Np, Am and Cm in spent nuclear fuels is of importance for a fuel characterization, evaluation of a burnup credit, and burnup determination of spent nuclear fuels. Additionally, the exact amount of the actinide elements, as the major elements of a source term, of the spent nuclear fuels is also used for a code verification that predicts the am...

متن کامل

Optimization of DUPIC Cycle Environmental

A study of the DUPIC (Direct Use of Spent PWR Fuel In CANDU) cycle was made to analyze cycle performance relative to that of PWR and CANDU fuel cycles in terms of uranium utilization and spent fuel production efficiency. The DUPIC cycle was found to be most efficient in terms of minimizing spent fuel production as well as most efficient (within limits) in terms of maximizing natural uranium uti...

متن کامل

Safety Analysis of Spent Fuel Transportation Cask of Bushehr Nuclear Power Plant through the Passing of Fire Tunnel with ANSYS®10.0

The spent fuel assemblies (FAs) of Bushehr Nuclear Power Plant are planed to be transported by TK-13 casks. Each spent fuel transportation cask holds 12 spent FAs and has a thick steel container to provide shielding. The calculations have been performed for FAs with burn ups of 60 MWd/kg and a 3-years cooling period. The ANSYS®10.0 general finite element analysis package was se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009